
PWA Capability Report   |   1  

PROGRESSIVE WEB APPLICATIONS (PWA)
The flexibility of the web with a seamless user experience.

Capability Report

2019



PWA Capability Report   |   2  

Background............................................................

Why Progressive Web Applications?.....................

Alternatives to PWAs and Limitations...................

Comparison............................................................

Compatibility..........................................................

Performance..........................................................

Discoverability.......................................................

How Progressive is Your Web App?......................

Typical PWA Architecture on AWS........................

Typical PWA Architecture on GCP........................

Final Thoughts.......................................................

References.............................................................

3 - 4

5 - 7

8 - 9

10

11 - 12

13 - 14

15

16

17

18

19

20

Table of Contents



PWA Capability Report   |   3  

What is a PWA?

Progressive Web Apps (PWAs) 
are web applications but 
offer the user functionality 
traditionally available only to 
native mobile applications.
With features like:
•	 working offline
•	 push notifications
•	 access to native hardware

PWAs can provide a rich user 
experience, equalling that 
of native applications, and 
are based on common web 
standards.

A PWA is simply an advanced 
web application.

It offers the frictionless user 
experience of a native mobile 
application with the easy 
updates of a web application. 

Background

PWAs are an emerging technology that 
combine the open standards of the web 
offered by modern browsers to provide 
benefits of a rich mobile experience. 
- Wikipedia



PWA Capability Report   |   4  

The cross-platform nature of 
PWAs reduces development 
overheads, lowering total cost 
of ownership. 

PWAs deliver offline capabilities 
via ‘service workers’ and are a 
natural choice for a mobility 
solution. Coupled with faster 
development times and a larger 
talent pool than device native 
applications, they are a good 
choice for any mobile solution.

Web standards are continually 
evolving, with support for many 
advanced features already 
available or in experimental 
preview.
 
Cutting edge features like 
augmented reality (AR), access 
to hardware features such 
as accelerometer, GPS and 
Bluetooth are implemented in 
some platforms. 

However, due to the complexity 
of the landscape, support differs 
across platforms. 

Background



PWA Capability Report   |   5  

Why Progressive Web Applications?

Native Device Support

Multi Platform

Frictionless Deployment

Instant Updates

Offline Support

PWA Capability Report   |   5  



PWA Capability Report   |   6  

Why Progressive Web Applications?

     Native Device Support

Progressive Web Apps running 
on modern browsers have 
access to nearly all of the 
functions that were only 
available to native applications 
traditionally. 

Features like push notifications, 
geo-location and touch gestures 
are all available to PWAs. 

Access to cameras, sensors, 
bluetooth and device features is 
now available on most browsers.

Diagram 1 - Examples of Native Device Support for Android from  
https://whatwebcando.today

 (Continued...)



PWA Capability Report   |   7  

Why Progressive Web Applications?

     Multi Platform      Frictionless Deployment     Instant Updates

     Offline Support

Developers only have to develop 
and worry about one code 
base which decreases the time 
to build and release updates 
(sometimes as much as 3x).

Instead of building, testing 
and deploying separate code 
bases for Android, iOS and Web 
- there is a single code base to 
maintain. 

The application can run on any 
device with a browser, including 
a desktop, tablet or a mobile.

Deploy through a single channel 
without having to go through a 
third party like the Play Store. 

With a modern CI/CD pipeline 
and a PWA, changes and bug 
fixes can be deployed in a matter 
of minutes, several times a day, 
with no interruption to the user.

Service workers allow new 
scripts/stylesheets to be used 
as soon as they are deployed to 
the server so the user doesn’t 
even need to press an update 
button.

Service workers and local data 
stores also allow PWAs to 
operate beyond the network. An 
application can be downloaded 
once and will run independently 
of network access.

 (Continued...)

PWA Capability Report   |   7  



PWA Capability Report   |   8  

Alternatives to PWAs and Limitations
Native Mobile Applications

Limitations of Native Mobile Applications

The primary mobile operating systems 
are Android and iOS (after the 
discontinuation of Windows 10 Mobile 
in 2017). 

Native applications for each operating 
system use different languages and 
tool sets, meaning separate native 
applications must be developed for 
each platform.

Each mobile platform has its own 
native programming language, SDKs 
and tools: iOS uses Swift and Xcode; 
Android promotes Kotlin and Android 
Studio.

Native applications offer a responsive 
use experience on a specific device, 
and can access device specific 
hardware, but have a number of 
limitations.

Building and deploying applications is 
complicated and slow, often involving 
updates pushed through Apple or 
Android app stores. 

Running on multiple mobile platforms 
means developing and maintaining 
separate code bases for each 
platform.



PWA Capability Report   |   9  

Alternatives to PWAs and Limitations

Cross-Platform Programming and Limitations
In an attempt to tackle the challenges 
around building native applications 
for multiple platforms, a number of 
cross platform frameworks have been 
developed.

Apache Cordova, originally PhoneGap, 
was one of the first cross platform 
frameworks, released in 2009 
focussed on using CSS, HTML and 
Javascript built within a native 
WebView.

Xamarin, owned by Microsoft and 
founded in 2011, allows developers 
to build Android and iOS applications 
using C#.

React Native, released by Facebook 
in 2015, enables the development 
of native applications using the 
React web framework. React Native 
interprets the Javascript messages to 
manipulate native views.

Flutter, released by Google in 2015, 
uses the Dart language and ahead-
of-time compilation to build native 
applications for iOS and Android.

While these systems overcome 
some of the limitations of native 
mobile applications they still remain 
challenging to build, update and 
deploy continuously. 

PWA Capability Report   |   9  



PWA Capability Report   |   10  

Comparisons



PWA Capability Report   |   11  

Compatibility

The Web platform standards, 
including HTML and Javascript 
are continuously evolving and 
adding new capabilities. 

Web browsers, developed by 
different organisations, each 
support the standards at a 
different rate. 

As such, understanding the 
compatibility of the wide array of 
browsers can feel complex and 
daunting.

If you do not require specialist 
features of the device, then 
PWAs offer a number of other 
significant advantages. 

An oft-cited limitation of 
PWAs at the moment is push 
notifications. 

Push notifications are well 
supported on Android, but are 
not natively supported on iOS. 

If you have control over the 
hardware platform, Android 
provides greater flexibility and 
interoperability.

PWA are recommended when :

•	 You require a flexible platform that allows continuous updates. 

•	 You have access to a modern browser, e.g. Chrome. 

•	 You want a responsive cross-platform experience. 



PWA Capability Report   |   12  

Compatibility

It is worth noting that the Web 
platform is a continually evolving 
standard, with new capabilities 
being added. 

For example, the WebVR 
and WebXR specifications 
are currently experimental 
for developing virtual and 
augmented reality applications. 

PWAs provide a future-proof 
platform. 

Whilst there are compatability 
differences between different 
browsers and platforms, web 

standards provide a platform for 
a consistent experience across 
multiple devices.

By comparison, native 
applications provide full 
access to all native capabilities 
supported by the device/SDKs. 

Whilst this provides the 
maximum flexibility, there are 
additional complexities when 
considering native applications, 
including device compatibility, 
screen resolution and app 
permissions.

Try comparing your desktop computer 
and its default browser with your 
mobile phone and a browser like 
Chrome.

Because support varies across 
platforms, PWAs can gracefully 
degrade their available functionality 
to give users a seamless experience.

If you want to find out what your web 
browser is capable of visit 
https://whatwebcando.today

Note that you will get different results 
depending on the device and browser 
you use.

 (Continued...)

PWA Capability Report   |   12  



PWA Capability Report   |   13  

Performance

Application performance 
has a key impact on user 
engagement.

Research from Google shows 
that 53% of engagements 
are likely to be abandoned if 
applications take longer than 3 
seconds to load. 

In fact, if an application fails 
to respond in less than 1000 
milliseconds (1 second), users 
lose focus on the task they are 
performing. 

Performance translates directly 
into user satisfaction and 
longer engagement within an 
application, allowing users to 
complete business tasks easily 
and without friction.

Mobile web experiences have, 
historically, been criticised for 
poor performance. 

However, the offline capability 
of PWAs, coupled with a focus 
on user experience, can achieve 
excellent results.

Cloud Native PWAs are deployed 
on highly scalable, resilient 
infrastructure, offering fast, low 
latency connections to minimise 
load times. 

WebAssembly provides an 
additional mechanism, within 
the web platform, for native 
performance aimed at a number 
of use-cases.



PWA Capability Report   |   14  

Performance

Responsive: 
Process events in under 50ms
  
Idle:
Maximize idle time for 
background processing

PWAs can comfortably meet the RAIL requirements:

Animation:
Produce a frame in 10ms
  
Load:
Deliver content and become 
interactive in under 5 seconds

RAIL is Response, 
Animation, Idle, Load.

It is a user-centric 
performance model that 
breaks down the user’s 
experience into key 
actions. 

RAIL’s goals and guidelines 
aim to help developers and 
designers ensure a good 
user experience for each 
of these actions. 
— developer.google.com

 (Continued...)

Diagram 2 -  from https://developers.google.com/web/fundamentals/performance/rail



PWA Capability Report   |   15  

Discoverability

Progressive web applications 
are searchable, providing 
the reach of web, with the 
performance and capabilities of 
a native experience.

PWAs are linkable, using the 
browser’s native navigation 
mechanisms; they can easily 
transport a user directly to a 
data-specific page in an app. 

Links can be easily shared with 
others to extend the reach and 
utility to other mediums, such as 
email or instant message.

A key design principle for PWAs 
is graceful degradation, when 
features are unavailable in the 
browser, the application should 
respond and provide basic 
functionality and a consistent 
experience for all users.

Native applications are not 
inherently searchable or 
discoverable. To make a native 
application discoverable you 
need to build links into the Apple 
or Android stores and hope that 
users will follow the redirections. 

Progressive web 
applications are easily 
discoverable. Whether 
through public search, 
such as Google, or through 
an internal enterprise 
search.



PWA Capability Report   |   16  PWA Capability Report   |   16  

How Progressive is Your Web App?

Lighthouse is an open 
source tool released 
by Google to allow web 
developers to profile their 
own applications.

It measures how responsive, 
accessible, progressive and reliable 
a web application is. 

It can be run inline with the build 
pipeline for a web application to 
allow teams to continuously tune 
the performance and reliability of 
their web application. 

https://developers.google.com/
web/tools/lighthouse/

Diagram 3 - An example of a Lighthouse report



PWA Capability Report   |   17  

Typical PWA Architecture on AWS

Diagram 4 - This example of a PWA 
Architecture describes a simple, user-
friendly mobile interface to support 
maintenance technicians in the field. 

It allows users to work offline, improve 
data entry integrity and reduce 
workforce frustration. 

When network connectivity is detected, 
it will automatically synchronise with a 
cloud-based backend.

This will store and forward data to 
enterprise systems and the user will be 
notified of successful upload, allowing 
an asynchronous communication model.



PWA Capability Report   |   18  

Typical PWA Architecture on GCP

Diagram 5 - Here is an equivalent PWA 
architecture implemented on Google’s 
Cloud Platform (GCP).

It utilises Google cloud products to 
provide backing services like DNS, 
authentication and database, with a 
compute layer provided by Google Cloud 
Functions.

This minimises the amount of work 
developers need to do to provide a 
reliable, scalable application and allows 
them to focus on the end-user and 
business logic. 



PWA Capability Report   |   19  

Final Thoughts

Progressive Web Applications 
are an appropriate technology to 
deploy to the majority of mobility 
use-cases.  

The centralised deployment 
model provides a number of 
benefits over native application 
deployments that should not be 
under-estimated.  

Many perceived downsides 
to PWAs on mobile, such as 
increased battery usage and 
UI performance are caused 
by implementation specifics; 
comparisons are difficult to 
draw and examples can be found 
both for and against.

There are limitations that must 
be considered when undertaking 
a new PWA:

•	 Storage limits are more 
restrictive than for native 
applications requiring 
consideration.

•	 Support for PWAs does 
vary across platforms and 
browsers.

However, the benefits far 
outweigh the costs for almost 
all situations.



PWA Capability Report   |   20  

References

Progressive Web Apps - explained by Google.

WhatWebCanDoToday - to find out what features your 
browser supports.

Lighthouse - an open source tool to profile your web app for 
performance and reliability.

11 Examples of Progressive Web Apps - high profile 
examples of PWAs.

Build a PWA on AWS - an example of how to build a PWA 
using Amplify and AppSync.

Trivago embraces PWA’s for the future - Trivago invest in 
PWAs to create a better, more stable mobile experience.

Device photography by Charles Deluvio and Hardik Sharma.

PWA Capability Report   |   20  

https://developers.google.com/web/progressive-web-apps
https://whatwebcando.today/
https://developers.google.com/web/tools/lighthouse
https://medium.com/@the_manifest/11-examples-of-progressive-web-apps-944f6db25a5a
https://aws.amazon.com/blogs/mobile/building-progressive-web-apps-with-the-amplify-framework-and-aws-appsync/
https://www.thinkwithgoogle.com/intl/en-154/insights-inspiration/case-studies/trivago-embrace-progressive-web-apps-as-the-future-of-mobile/

